DRUGS IN PEPTIC ULCER DISEASE

Dr Ruwan Parakramawansha
MBBS, MD, MRCP(UK),MRCPE, DMT(UK)
(2013/04/24)

LEARNING OUTCOMES
By the end of the lecture, students will be able to describe...

1. Pharmacological profile of:
 (i). Antacids
 (ii). H2 receptor antagonists
 (iii). proton-pump inhibitors
 (iv). cytoprotective agents

2. Interaction of drugs used for Helicobacter pylori eradication

OUTLINE....

A. What is Peptic Ulcer Disease (PUD) ?
B. Pathophysiology of PUD
C. Physiology of Gastric Acid Secretion
D. Pharmacological Treatment Options

PEPTIC ULCER DISEASE
A disease characterized by ulcers in gut mucosa exposed to gastric secretions.
E.g. Stomach, Duodenum

PHYSIOLOGY - GASTRIC ACID SECRETION

PHYSIOLOGY – MUCOSAL DEFENCE

Prostaglandins
Mucosal Cells
Vasodilation of mucosal blood vessels
Keep mucosa intact

Mucus and HCO3– Secretion
PATHOPHYSIOLOGY

Peptic ulceration develops...

a. When there's a breakdown in mucosal defense system of the stomach or duodenum.

b. When there is excessive and prolonged acid or pepsin secretion.
 E.g., Zollinger Ellison Syndrome

Role of Helicobacter pylori...

- A gram-negative rod found in the mucous gel coating the gastric mucosa or between the mucous layer and the gastric epithelium.
- Causes ~ 90% of duodenal ulcers and ~ 80% of gastric ulcers

Role of Helicobacter pylori...

- Cause ↑ resting and meal-stimulated gastrin levels
- ↓ gastric mucus production and duodenal mucosal bicarbonate secretion

NSAIDs and PUD...

- Cause ~ 24% of peptic ulcers in US
- Via ↑ acid secretion and ↓ mucosal protection by blocking prostaglandin synthesis
- Less common with COX-2 selective NSAIDs
 E.g., Celecoxib

DRUGS USED TO TREAT PUD

- Antisecretory Agents
 E.g., Proton pump inhibitors
 Histamine H₂ receptor antagonists
 Antimuscarinic agents
- Agents Enhancing Mucosal Defenses
 E.g., Misoprostol
 Sucralfate
- Antacids
- H. pylori eradication

PROTON PUMP INHIBITORS

- Diminish the daily production of acid by 80-95%
- ↓ both basal and stimulated gastric acid secretion
- Pro-drugs that require activation in an acid environment
- Several PPIs available- all equally efficacious
 E.g., Omeprazole, lansoprazole, esomeprazole, rabeprazole and pantoprazole
MODE OF ACTION...

- Irreversibly binds and blocks the proton pump.
- Acid secretion resumes only after new pump molecules are synthesized and inserted into the luminal membrane.
- Provides a prolonged (up to 24 to 48 hour) suppression of acid secretion.

PHARMACOKINETICS

- Degrades rapidly at low pH. Administered as capsules containing enteric-coated granules.
- From systemic circulation, the pro-drug diffuses into the parietal cells of the stomach and accumulates in the acidic secretory canaliculi.
- It is activated in this acidic milieu.

ADVERSE EFFECTS...

- Remarkably few ADRs.
- Most common: nausea, abdominal pain, constipation, flatulence, and diarrhoea.
- Other concerns with chronic use:
 - Increased incidence of *C. difficile* infections
 - ↓ absorption of vitamin B12
 - ↑ risk of fractures.
 - Hypergastrinemia and theoretical risk of gastric tumours.

DRUG INTERACTIONS

- With drugs metabolized through same CYP enzymes:
 - Warfarin
 - Diazepam
 - Clopidogrel
 - Phenytoin
- Via inhibition of CYP2C19:
 - Clopidogrel
- ↑ antiplatelet effect
 - Phenytoin
 - ↑ Serum concentration.
DRUG INTERACTIONS

OMEPRAZOLE (Active) → Clopidogrel (Inactive)

OMEPRAZOLE (Inactive) → Clopidogrel (Active)

HISTAMINE(H₂) ANTAGONISTS

- **e.g.** Cimetidine, Famotidine, Ranitidine

Mode of action
Competitively blocks the histamine H₂ receptor and ↓ acid secretion

- Predominantly inhibit basal acid secretion
- Suppress 24-hour gastric acid secretion by ~70%

HISTAMINE(H₂) ANTAGONISTS

Mode of action… Histamine

Adverse Effects
- Minimal
- Diarrhoea and constipation
- Headache, drowsiness, and muscular pain

Cimetidine,
1. ↓ testosteron binding to the androgen receptor
2. inhibit CYP metabolism of oestradiol

Galactorrhea in women
Gynaecomastia, Impotence in men

HISTAMINE(H₂) ANTAGONISTS

- **Drug Interactions…**
 - Cimetidine
 - Inhibit hepatic cytochrome P450
 - ↑ warfarin, phenytoin, theophyllin concentrations

- **Tolerance** (diminished therapeutic effect with continued drug administration)
 - can develop within 3 days
 - due to secondary hypergastrinaemia

PIRENZEPINE

Mode of action…

Acetylcholine

K⁺ → H⁺
MUCOSAL PROTECTORS

- Prostaglandin analogues – MISOPROSTOL
 - Acid secretion, ↑ mucus and HCO₃⁻

- SUCRALFATE
 - Forms a physical barrier

- COLLOIDAL BISMUTH
 - Forms a physical barrier, inhibit H. pylori

MISOPROSTOL

Prostaglandins

\[\downarrow \text{Vasodilatation of mucosal blood vessels} \]

Mucosal Cells

\[\downarrow \text{Keep mucosa intact} \]

Mucus and HCO₃⁻ Secretion

ANTACIDS

[Al(OH)₃], Mg(OH)₂, Sodium bicarbonate

- Mode of action…
 - Neutralizes gastric acid.
 - Decreases pepsin activity secondary to ↑ gastric pH

- Adverse Effects…
 - Aluminium Salts → Constipation
 - Magnesium Salts → Diarrhoea

SUCRALFATE

- In an acid environment (pH <4), sucralfate produces a viscous, sticky polymer
 - the polymer adheres to epithelial cells and ulcer craters
 - prevents pepsin-mediated hydrolysis of mucosal proteins

ANTACIDS

- Caution….
 1. High sodium antacids – In Hypertension and CCF
 2. Aluminium containing antacids – in renal impairment

- Interactions….
 - Bind other drugs and prevent absorption
e.g. Tetracycline, digoxin, iron
H. PYLORI ERADICATION

Antibiotics (Amoxycillin / Clarithromycin / Metronidazole)

+ Antisecretory Agent (Ranitidine / Proton pump Inhibitor)

± Colloidal Bismuth

DURATION OF TREATMENT 10-14 DAYS

BISMUTH COMPOUNDS

- As effective as cimetidine in patients with peptic ulcers

- Modes of action:
 - Bind to the base of the ulcer and prevent mucosal injury
 - Promote mucin and bicarbonate production
 - Antibacterial effect against H. pylori